

Al accelerators for reconfigurable technologies

A. García Ríos (grios@ugr.es), and R. Padial Allué (rubenpadial@ugr.es)

Department of Electronics and Computer Technology CITIC-University of Granada, Granada, Spain.

Calendar

TIGACIÓN EN TECNOLOGÍAS ÓN Y LAS COMUNICACIONES	Morning session		Afternoon session	
Date	Responsible (Schedule)	Unit	Responsible (Schedule)	Unit
Monday 17/11			A. García, R. Padial (16:00-19:30)	Fundamentals of Artificial Intelligence
Tuesday 18/11			A. García, R. Padial (16:00-19:30)	Introduction to Accelerated Computing and Reconfigurable Technologies I
Wednesday 19/11			A. García, R. Padial (16:00-19:30)	Introduction to Accelerated Computing and Reconfigurable Technologies II

Calendar

TIGACIÓN EN TECNOLOGÍAS N Y LAS COMUNICACIONES	Morning session		Afternoon session	
Date	Responsible (Schedule)	Unit	Responsible (Schedule)	Unit
Thursday 20/11			A. García, R. Padial (16:00-20:00)	Introduction to Neural Network Acceleration on FPGAs
Friday 21/11			A. García, R. Padial (16:00-20:00)	Specific Design Flows for Implementing AI Algorithms on Reconfigurable Devices I
Monday 24/11			A. García, R. Padial (16:00-20:00)	Specific Design Flows for Implementing AI Algorithms on Reconfigurable Devices II

☐ Fundamentals of Artificial Intelligence

- Description of the main neural network architectures (MLP, CNN, etc.) and their applications.
- Typical operations in AI models and their implications in hardware.
- Model quantization and efficient data representation (int8, float16).
- Trade-off between accuracy, performance, and power consumption.

Introduction to Accelerated Computing and Reconfigurable Technologies I

- Comparison between CPU, GPU, TPU, and FPGA for AI.
- Advantages and disadvantages of FPGAs for AI acceleration.
- Applications: edge computing, robotics, computer vision, etc.

- Introduction to Accelerated Computing and Reconfigurable Technologies II
 - Workflows for AI algorithm inference in embedded systems.
 - Definition and training of an Al model.
- ☐ Introduction to Neural Network Acceleration on FPGAs
 - What is HLS (High-Level Synthesis) and what is it used for.
 - Advantages compared to classic RTL design.
 - Design of simple blocks (multiplication, convolution, activation functions): implementation examples.

- ☐ Specific Design Flows for Implementing AI Algorithms on Reconfigurable **Devices I**
 - Vitis AI, OpenVINO, Intel FPGA AI Suite, MATLAB: Basic. WorkflowCompilation of a pre-trained model in MATLAB and inference.
- ☐ Specific Design Flows for Implementing AI Algorithms on Reconfigurable **Devices II**
 - Quantization, compilation, and testing of a pre-trained model.
 - Performance measurement: latency and resource usage.
 - Quantization of the pre-trained model, inference, and performance measurement.

